数智新风向
本报记者 胡畔
在刚刚结束的2023世界机器人(12.360, -0.27, -2.14%)大会上发布了这样一组数据:2022年我国机器人产业营业收入超1700亿元,保持两位数增长;机器人领域专精特新“小巨人”企业达273家,10家机器人企业成长为制造业单项冠军;2022年我国工业机器人装机量占全球比重超过50%,稳居全球第一大市场,制造业机器人密度达到每万名工人392台……
毋庸置疑,我国机器人产业正迎来蓬勃发展的时代。其中,作为制造业的重要组成部分,工业机器人在此间也发挥着关键作用。
一方面,工业机器人可以在生产线上执行复杂的任务,提高生产效率和产品质量。例如,在汽车制造中,工业机器人可以完成焊接、喷涂、组装等工序,减少了人工操作的误差和劳动强度。
另一方面,工业机器人还可以在危险环境下代替人类工作,保障员工的安全。例如,在化工行业中,机器人可以在有毒有害的环境中进行作业,避免了人员暴露于危险之中。同时,随着科技的飞速发展,工业机器人还逐步从传统的“机械臂”转变为拥有自主感知、学习和决策能力的智能机器人,这一智能化的趋势为智能制造带来了全新的机遇和挑战。
“传统的生产线往往需要进行繁琐的调整和改造,以适应新产品的生产,而智能化的工业机器人可以通过学习和优化,快速调整工作模式,从而降低生产线调整的时间和成本。”国内某机械制造企业加工车间负责人对中国经济时报记者表示,工业机器人智能化的发展和应用,正成为智能制造的重要推动力量。
当前,人工智能、大数据、新材料等新技术正与机器人技术深度融合,新产品、新形态、新应用等层出不穷。随着大数据技术的不断发展,数据在工业机器人智能化中的作用越发重要,数据驱动逐渐成为工业机器人智能化的核心。具体而言,大数据技术使得机器人可以收集和分析大量的生产数据,从而了解生产过程的变化和趋势。而人工智能技术,特别是深度学习,赋予了机器人处理和理解这些数据的能力,进而实现自主决策和智能行动。
不过,有业内人士对中国经济时报记者表示,从目前情况来看,工业机器人智能化发展正面临一些挑战。
首先,机器人的自主感知和决策能力仍然相对有限,很难适应复杂多变的生产环境。例如,在不断变化的生产场景中,机器人可能难以准确感知和识别各种不同的工件和情况。
其次,工业机器人的智能化需要大量的数据支持,但数据的获取、处理和分析也面临一定的难题。一方面,工厂生产的数据往往分散在不同的系统中,如何将这些数据整合起来以支持机器人的智能化决策是一大难题。另一方面,数据的质量和准确性是智能化的关键,不准确的数据可能导致错误的决策,影响生产效率和质量。因此,如何确保数据的准确性和完整性也是一个重要的挑战。
此外,工业机器人的智能化还需要克服技术融合的问题。不同的智能技术需要在机器人中进行融合,以实现全面的智能化。这涉及到机械工程、电子工程、计算机科学等多个领域的交叉,需要解决技术集成和协同工作的难题。
最后,工业机器人智能化的研发和应用需要大量的资金投入,这对中小型企业可能构成一定的压力。
对此,专家建议,首先要加强研发,推动机器人感知和决策能力的提升。通过引入先进的传感技术和深度学习算法,使机器人能够更准确地感知环境并作出智能决策。其次要加强数据管理和分析能力。建立完善的数据采集、存储和分析系统,为机器人的学习和决策提供可靠的数据支持。同时,还要推动技术融合,促进不同领域技术的交流与合作,实现工业机器人智能化所需技术的有机整合。
此外,培养专业人才也是应对智能化挑战的关键。工业机器人的智能化涉及多个领域的知识,需要工程师具备跨学科的技术能力。因此,推动培养具备工业机器人智能化应用和研发能力的人才,是保障智能制造可持续发展的重要措施。
本文内容由互联网用户自发贡献,该文观点仅代表作者本人。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 3587015498@qq.com 举报,一经查实,本站将立刻删除。本文链接:https://www.xmnhj.com/h/212377.html